Reduced Gröbner Bases in Polynomial Rings over a Polynomial Ring
نویسندگان
چکیده
منابع مشابه
Reduced Gröbner Bases in Polynomial Rings over a Polynomial Ring
We define reduced Gröbner bases in polynomial rings over a polynomial ring and introduce an algorithm for computing them. There exist some algorithms for computing Gröbner bases in polynomial rings over a polynomial ring. However, we cannot obtain the reduced Gröbner bases by these algorithms. In this paper we propose a new notion of reduced Gröbner bases in polynomial rings over a polynomial r...
متن کاملOn Gröbner bases and Krull dimension of residue class rings of polynomial rings over integral domains
Given an ideal a in A[x1, . . . , xn] where A is a Noetherian integral domain, we propose an approach to compute the Krull dimension of A[x1, . . . , xn]/a, when the residue class ring is a free A-module. When A is a field, the Krull dimension of A[x1, . . . , xn]/a has several equivalent algorithmic definitions by which it can be computed. But this is not true in the case of arbitrary Noetheri...
متن کاملGröbner bases for polynomial systems with parameters
Gröbner bases are the computational method par excellence for studying polynomial systems. In the case of parametric polynomial systems one has to determine the reduced Gröbner basis in dependence of the values of the parameters. In this article, we present the algorithm GröbnerCover which has as inputs a finite set of parametric polynomials, and outputs a finite partition of the parameter spac...
متن کاملRing-LWE in Polynomial Rings
The Ring-LWE problem, introduced by Lyubashevsky, Peikert, and Regev (Eurocrypt 2010), has been steadily finding many uses in numerous cryptographic applications. Still, the Ring-LWE problem defined in [LPR10] involves the fractional ideal R∨, the dual of the ring R, which is the source of many theoretical and implementation technicalities. Until now, getting rid of R∨, required some relatively...
متن کاملPolynomial Rings over Pseudovaluation Rings
Let R be a ring. Let σ be an automorphism of R. We define a σ-divided ring and prove the following. (1) Let R be a commutative pseudovaluation ring such that x ∈ P for any P ∈ Spec(R[x,σ]) . Then R[x,σ] is also a pseudovaluation ring. (2) Let R be a σ-divided ring such that x ∈ P for any P ∈ Spec(R[x,σ]). Then R[x,σ] is also a σ-divided ring. Let now R be a commutative Noetherian Q-algebra (Q i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics in Computer Science
سال: 2008
ISSN: 1661-8270,1661-8289
DOI: 10.1007/s11786-008-0060-8